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Because of their simplicity and low computational cost, discretizations based on

pixels have held sway in remote sensing since its inception. Yet functional represen-

tations are clearly superior in many applications, for example when combining

retrievals from dissimilar remote sensing instruments. Using cloud tomography as

an example, this letter shows that a point-function discretization scheme based on

linear interpolation can reduce retrieval error of cloud water content up to 40%

compared to a conventional pixel scheme. This improvement is particularly marked

because cloud tomography, like the vast majority of remote sensing problems, is ill-

posed and thus a small inaccuracy in the formulation of the retrieval problem, such

as discretization error, can cause a large error in the retrievals.

1. Introduction

Discretizations based on pixels have held sway in remote sensing since its inception.

These pixel discretization schemes have shown many disadvantages as earth observa-

tions are relying more and more on multi-sensor data. For example, the NASA EOS

A-train satellites carrying many dissimilar sensors (active vs. passive, different instan-

taneous field of view, etc.) have provided unprecedented data for comprehensive

studies of Earth’s weather and climate (Stephens et al. 2002). In the pixel framework,

the mismatch of pixel sizes used in various satellite products poses many challenges
for data integration. The pixel scheme can also introduce artefacts in ground-based

remote sensing. The beam of a ground microwave radiometer, for example, is a cone

extended from the radiometer and the actual width of the beam varies with height; this

cone is not naturally matched by rectangular pixels.

Furthermore, the inverse problems of remote sensing are often ill-posed, making the

retrieval sensitive to small inaccuracies such as discretization errors. Discretization errors

will be magnified in numerical inversion procedures, making the retrieval even more

inaccurate (Bockmann 2001). Superficially, it would seem that discretization error could
be reduced by using smaller grids/pixels, but in practice this may not improve the

retrieval. This is because finer grids lead to a larger number of unknowns, thus a higher

dimension in the inverse problem, which in turn makes the inverse problem more ill-posed

and thus the retrieval more sensitive to perturbations (Hansen 1998). The trade-off

between discretization and ill-posedness limits the ability of remote sensing to resolve
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the desired variables at fine spatial scales. The interweaving issue of ill-posing and

discretization needs to be addressed to improve the remote sensing retrievals.

Functional representation was initially proposed for medical image reconstruction

problems as an alternative to transform methods (Censor 1983). The functional

approach has also been found to be valuable for remote sensing problems like infra-
red sounding of atmospheric temperature and constituent profiles (Susskind et al.

2003). With a functional representation satellite images can be resampled at any

resolution and thus can help the problem of resolution mismatch between different

satellite products, although the minimal resolvable scale, of course, is limited by the

inherent resolution of the instrument. For inverse retrieval problems, functional repre-

sentations can further help the interweaving issue of ill-posedness and discretization

error. The variable to be retrieved is expressed as a superposition of some prescribed

basis functions, usually orthogonal empirical functions derived from historical obser-
vations or functions such as the Fourier basis and polynomials. Then the only

unknowns are the coefficients for each basis function; in this way the discretization

error can be reduced without increasing the dimension of the retrieval problem.

The objective of this research letter is to adopt a functional discretization scheme,

called point-function discretization, through which a two-dimensional or three-

dimensional (2D/3D) continuous field is approximated by interpolating a set of

point values over the whole domain. Microwave cloud tomography is then used as

an example to show that the point-function discretization scheme can be integrated
into an inversion algorithm to reduce the discretization error and thus to improve the

retrieval.

2. Pixel and point-function representations

Remote sensing retrieval problems can generally be formulated as deriving the dis-

tribution of some desired variable x(r) within a domain � from the set of remote sensing

measurements {bi}. In many applications, the problem can be reduced to solving a set

of Fredholm integral equations of the first kind (Arfken 1985):ð

r2�

aiðrÞxðrÞdr ¼ bi; (1)

where ai(r) is a kernel function representing the forward operator that relates the

desired variable x(r) to the measurements {bi}.
The spatial domain � can be partitioned into a multiplicity of overlapping or non-

overlapping elements. Using overlapping elements inherently imposes a certain

degree of smoothness in the retrieval, which can be an advantage for ill-posed inverse

problems. Here, for simplicity, N non-overlapping elements Ei are chosen such that

UN
i¼1Ei ; �. The elements join at n vertex nodes ej, j ¼ 1, . . ., n (a node is a point at

which three or more elements intersect). For simplicity, throughout this study equal-

sized square elements are used so that the nodes are equally spaced by a distance d.

The solution x(r) to equation (1) is approximated by a superposition of a set of
predefined basis functions w(r, e j):

xðrÞ �
Xn

j¼1

wðr; ejÞxðejÞ: (2)
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The inverse problem now is to find the nodal values x(ej) from which the solution

everywhere in the domain � can be derived by the interpolation rule (2).

Unfortunately, in many applications the historical observations needed to empiri-

cally specify the basis functions are unavailable and one has to choose arbitrary bases.

Different choices of the basis functions lead to different discretization models. This is
illustrated as follows. Let ej be the nearest node to an arbitrary location r. Setting the

basis to the Kronecker delta function, i.e. w(r, ei) ¼ w(ej, ei) ¼ �ij, assures that x(r)

takes the same value in the box of size d centred at ej. Hence the choice of the

Kronecker delta function coincides with the conventional pixel scheme.

If the Kronecker delta bases are replaced with pyramidal-shaped basis functions, a

new discretization scheme is obtained (Giuli et al. 1991). This is called the point-

function discretization scheme here. Let (rx, ry) and (ei
x, ei

y) denote the coordinates of

point r and node ei in the 2D case and let the basis function be the bi-linear interpola-
tion function:

wðr; eiÞ;ð1� tÞð1� uÞ; (3)

where ei
x � rx � ei

x þ d and ei
y � ry � ei

y þ d, and t ; ðrx � ei
xÞ=d, u ; ðry � ei

yÞ=d.
With the basis functions specified by equation (3), substituting equation (2) in

equation (1) leads to

Xn

j¼1

xðejÞ
ð

r2�

aiðrÞwðr; ejÞdr ¼ bi (4)

Rewrite equation (4) as a matrix equation:

Ax ¼ b; (5)

where A ; ðaijÞ is an m � n kernel matrix representing the forward operator with its

entry aij ¼
R

r2� aiðrÞwðr; ejÞdr, x is the vector of desired variables at the n nodes, and
b is the vector of remote sensing measurements. In this way, the retrieval problem is

now reduced to solving the matrix equation (5) for a set of point values and then

interpolating the point values to obtain the desired variables in the entire domain.

3. Application to microwave cloud tomography

Having concentrated on the mathematical description of the point-function discreti-

zation scheme, the next step is to apply this scheme to a practical remote sensing

problem to examine its impacts on the retrieval accuracy.

3.1 Cloud tomography and constrained inversion algorithm

Cloud tomography is a method for retrieving 2D/3D fields of cloud liquid water

content (LWC) from cloud thermal emission measurements (Warner et al. 1985). This

method involves measuring the microwave cloud emission from a multiplicity of
different directions by a single airborne or multiple ground-based radiometers and

inverting the resulting radiometric data for the LWC field by numerical procedures.

The tomographic retrieval problem is highly ill-posed especially when only a few

ground-based radiometers are used, as shown in Huang et al. (2008a).

The conventional pixel scheme can produce artefacts in the tomographic retrievals

(Scales et al. 1990; Delprat-Jannaud and Lailly 1993). As illustrated in figure 1, the

sampling volume of each radiometer is mainly within a cone whose apex angle is
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determined by the antenna beam width. It is thus not surprising that dividing the

retrieval space into rectangular boxes will introduce artefacts in the tomographic

retrieval. Moreover, some beams graze a pixel through its corner such that the path

lengths of these beams in this pixel are very small and so carry little information about

this pixel.

To test the capability of the point-function discretization scheme, two very different
cloud cases are selected: a stratocumulus and a patchy cumulus. Both cases are 5 km

wide and 1.5 km high snapshots from a large eddy simulation model (Ackerman et al.

1995). Four simulated radiometers of 0.3 K noise level and 2-degree beam width are

spaced equally along a line of 10 km on the ground. Each radiometer scans the upper

plane within 80� elevation of zenith at a 0.35� increment and this scanning strategy

results in a total of 900 rays intersecting the 5 km by 1.5 km domain. The brightness

temperature data for each ray are computed based on a radiative transfer equation

and a prescribed antenna response function (Huang et al. 2008a). The point-function
discretization scheme described in section 2 is then integrated into a constrained

inversion algorithm (Huang et al. 2008b) to handle the intertwining issue of ill-

posing and discretization.

3.2 Examination of discretization error and ill-posedness

The capability of the pixel and point-function discretization schemes to approximate

the true images is quantified by the root mean squared (rms) difference between the

discretized and original images, whereas the ill-posedness of the retrieval problem is

characterized by the condition number of the corresponding kernel matrix A, which is

the ratio of the maximum to minimum singular values.

Figure 1. Discretization artefacts of the pixel scheme when using four ground radiometers of
different antenna beam widths. Four microwave radiometers are equally spaced along a 10 km line.
The 5 km wide 1.5 km high domain, divided into 6� 6 pixels, contains a stratocumulus cloud. Note
that some rays intersect a pixel through its corner, e.g. ray A in pixel 13. The brightness temperature
measured along A is close to that of a clear sky. The resulting tomographic retrieval would yield
very little liquid water in pixels 13 and 18, which is apparently not true.
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The accuracy of a discretized approximation to a continuous field depends on the

smallest scale that the discretization scheme can resolve. This scale is usually deter-

mined by the total number of coefficients (pixels or points), n, used in the discretiza-

tion scheme. With the same number of coefficients, the point-function discretization

scheme significantly outperforms the pixel scheme: the rms error of the point-function

discretization scheme is about 60–80% of that of the pixel scheme when 25� n� 900;

with n � 25 neither scheme works well while with n � 1600 both schemes work well

(figure 2(a)). In contrast, the condition number of the pixel scheme agrees well with
that of the point-function scheme in the whole spectrum (figure 2(b), high-order

singular values would be numerically unstable and thus the condition numbers were

not calculated when n � 900). Note that a larger condition number means a more ill-

posed retrieval problem. Furthermore, figure 2 reveals the mixed consequences of

using finer discretization: the discretization error unsurprisingly decreases when more

pixels or points are used, while the condition number increases with finer discretiza-

tion. This confirms that discretization error and ill-posedness of the involved retrieval

problem trade off against each other and thus using finer discretization may not
improve the retrieval.

3.3 Retrieval results

The reduction of discretization error by the point-function scheme is expected to

improve the retrieval as well. Figure 3 shows the true and retrieved LWC distributions

Figure 2. Illustration of the trade-off between discretization error and ill-posedness of the
cloud tomography retrieval problem. The discretization errors ((a): characterized by rms error)
of the pixel and the point-function discretization schemes decrease, but the corresponding
condition numbers ((b): a measure of ill-posedness) increase, with increasing number of pixels
or grid points.
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for the two cloud cases obtained by using the pixel and point-function discretization

schemes. Although the retrieved images using the pixel scheme reasonably capture the

spatial patterns of the original images, they suffer from some noticeable artefacts. For

the first cloud case, some spurious clouds appear below the cloud base and over the

cloud top (figure 3(b)). Furthermore, the scattered clouds below the cloud base are

arranged along several lines approximately 20� and 40� off the nadir, which indicates
the discretization artefacts. For the broken cumulus cloud case, the retrieved image

shows more pieces of clouds compared to the true image (figure 3(e)). The shape of the

cloud patches is not realistic compared with the true image as well. In contrast, the

retrieval using the point-function discretization scheme preserves more features of the

original images. The spurious cloud patches disappear in the images retrieved with the

point-function discretization scheme for both the stratocumulus and the broken

cumulus cases. The geometrical shape of the clouds is also better reproduced with

the point-function discretization scheme than that retrieved with the conventional
pixel scheme.

For both cloud cases, the retrieval errors corresponding to the point-function

discretization scheme are reduced by up to 40% compared to those of the pixel

scheme, namely, 0.11 gm-3 and 0.069 gm-3 for the stratocumulus case, 0.076 gm-3

and 0.049 gm-3 for the patchy cumulus case.

Figure 3. The retrieved images using the pixel and the point-function discretization schemes
for two different cloud cases: a stratocumulus case (a, b, c) and a patchy cumulus case (d, e, f).
The cloud tomography simulations are based on four radiometers of 0.3 K noise level and 2-
degree beam width. For both discretization schemes, 30 � 30 ¼ 900 coefficients (pixels or
points) are used.
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4. Concluding remarks

A functional discretization scheme, called point-function scheme, has been adopted as

a replacement for the conventional pixel scheme. The point-function scheme approx-

imates continuous distributions based on values over a set of points and predefined

linear interpolation functions. It is first demonstrated that the point-function discre-

tization scheme yields a significantly smaller discretization error compared to the

pixel scheme when the same number of points or pixels are used for each discretization

scheme. Then the utility of the new discretization scheme for ill-posed remote sensing

problems is illustrated using the example of tomographic retrieval of cloud fields from
multi-angular line-integral measurements. The point-function discretization scheme

is integrated into a constrained inversion algorithm to handle the interweaving issue

of ill-posedness and discretization found in the practice of cloud tomography. This

integrated algorithm substantially improves the tomographic retrieval, reducing the

retrieval error by up to 40% compared to the conventional pixel scheme.

The point-function discretization scheme indeed has many advantages in applica-

tions like tomographic retrieval and atmospheric sounding. With the point-function

scheme, the remote sensing retrievals can be re-sampled virtually at any resolution,
while with the pixel scheme they can only be coarsened in quantum jumps. This

becomes important for synergetic retrieval from dissimilar remote sensing sensors,

each sampling at a different resolution, or even worse the resolution difference being

range-dependent because of conical beams; in this case, with the point-function

representation, one can sample one instrument at the resolution of the other or sample

both at a new resolution.
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